A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois
نویسندگان
چکیده
[1] This study presents the first direct comparison of terrestrial water storage estimates from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to in situ hydrological observations. Monthly anomalies of total water storage derived from GRACE gravity fields are compared with combined soil moisture and groundwater measurements from a network of observing sites in Illinois. This comparison is achieved through the use of a recently developed filtering technique designed to selectively remove correlated errors in the GRACE spectral coefficients. Application of this filter significantly improves the spatial resolution of the GRACE water storage estimates, and produces a time series which agrees quite well (RMS difference = 20.3 mm) with the in situ measurements averaged over an area of 280,000 km. Citation: Swenson, S., P. J.-F. Yeh, J. Wahr, and J. Famiglietti (2006), A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois, Geophys. Res. Lett., 33, L16401, doi:10.1029/2006GL026962.
منابع مشابه
Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from the High Plains Aquifer (USA)
[1] This study presents the first comparison of seasonal groundwater storage (GWS) variations derived fromGRACE satellite data with groundwater-level measurements in the High Plains Aquifer, USA (450,000 km). Correlation between seasonal GRACE terrestrial water storage (TWS) and the sum of GWS estimated from field measurements (2,700 wells) and soil moisture (SM) simulated by a land surface mod...
متن کاملWavelet analysis of GRACE K-band range rate measurements related to Urmia Basin
Space-borne gravity data from Gravity Recovery and Climate Experiment (GRACE), as well as some other in situ and remotely sensed satellite data have been used to determine water storage changes in Lake Urmia Basin (Iran). As usual, the GRACE products are derived from precise inter-satellite range rate measurements converted to different formats such as spherical harmonic coefficients and equiva...
متن کاملGlobal Evaluation of the ISBA-TRIP Continental Hydrological System. Part I: Comparison to GRACE Terrestrial Water Storage Estimates and In Situ River Discharges
In earth systemmodels, the partitioning of precipitation among the variations of continental water storage, evapotranspiration, and freshwater runoff to the ocean has a major influence on the terrestrial water and energy budgets and thereby on simulated climate on a wide range of scales. The evaluation of continental hydrology is therefore a crucial task that requires offline simulations driven...
متن کاملWater Cycle and Climate Signals in Africa Observed by Satellite Gravimetry
The availability of hydrologic data is an important step for hydrological modeling and water resource management in the world. Unfortunately, the in situ observations with the right characteristics are very sparse globally, particularly in Africa. Understanding the climate variability of Africa and its prominent role as the heat engine of the global climate system is one of the key goals in cli...
متن کاملMonitoring Groundwater Variations from Satellite Gravimetry and Hydrological Models: A Comparison with in-situ Measurements in the Mid-Atlantic Region of the United States
Aimed at mapping time variations in the Earth’s gravity field, the Gravity Recovery and Climate Experiment (GRACE) satellite mission is applicable to access terrestrial water storage (TWS), which mainly includes groundwater, soil moisture (SM), and snow. In this study, SM and accumulated snow water equivalent (SWE) are simulated by the Global Land Data Assimilation System (GLDAS) land surface m...
متن کامل